

Introduction to Map Projections

Michael Soracco NOAA Affiliate for NOAA CoastWatch College Park, MD

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Versioning: 20240920, Soracco 20210429,Soracco 2021,Soracco 2020, Soracco 2019, Soracco

CoastWatch Training, 2024, Virtual Class

This Training

- Expands on information discussed in the GIS modules of the NOAA CoastWatch Satellite Training Course
- Useful references:
 - USGS: JP Snyder, Map Projections: A Working Manual: <u>https://pubs.usgs.gov/publication/pp1395</u>
 - ESRI ArcGIS Pro:

https://pro.arcgis.com/en/pro-app/latest/help/mapping/properties/coordinat e-systems-and-projections.htm

• NSIDC:

https://nsidc.org/data/user-resources/help-center/mapping-and-gridding-pri mer-points-pixels-grids-and-cells

Introduction to Map Projections

Michael Soracco NOAA Affiliate for NOAA CoastWatch College Park, MD

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Versioning: 2024, Soracco 2020, Soracco

Earth

- Is not flat[until projected]
- •Is not a sphere

Earth Coordinate Systems

- Horizontal (surface)
 - Geographic
 - Geographic (Lat/Long)
 - Geodetic (map projections)
 - Projected (Geodetic)
 - Local
- Vertical (altitude / depth)
 - Gravity-based (Mean sea level)
 - Ellipsoidal (Mathematical)

Typically used for GLOBAL data and needs to match the same ellipsoid used in the Horizontal system (i.e. WGS84) And there is a difference between WGS84 and WGS 84. WGS84 is an alias of the ellipsoid (EPSG::7030). WGS 84 can be referring to the ellipsoid, a geodetic coordinate system (EPSG:4326) or datum (EPSG::6326)

Datum

- Spheroid/Ellipsoid
- Defines frame of reference
 - Measurements
 - Latitude/longitude lines
- Chosen for best accuracy [at a given scale]
 - Global geocentric datum using the Earth's center of mass (WGS84)
 - Local datums are matched to the surface
- A 'datum shift' is a change of datums while maintaining projection

So you can have a different latitude and longitude for the same point?

Datum

- Spheroid/Ellipsoid
- Defines frame of reference
 - Measurements
 - Latitude/longitude lines

- Local datum C.M. Local Coordinate System Geocentric coordinate system
- Chosen for best accuracy [at a given scale]
 - Global geocentric datum using the Earth's center of mass (WGS84)
 - Local datums are matched to the surface
- A 'datum shift' is a change of datums while maintaining projection

So you can have a different latitude and longitude for the same point?

Geographic Coordinate System

- •3-D Spheroid/Ellipsoid
 - Datum
- •Latitude and Longitude
 - Forms graticules at surface
- •Angles (degrees) measured from the Earth's center to the surface
- •Not uniform units of measure equator is the closest you get

Geographic Coordinate System

- •3-D Spheroid/Ellipsoid
 - Datum
- •Latitude and Longitude
 - Forms graticules at surface
- •Angles (degrees) measured from the Earth's center to the surface
- •Not uniform units of measure equator is the closest you get

We have a map!

Scale error is minimized at the map's origin or when a latitude of True Scale is used (projection dependent)

NOAA CoastWatch

https://coastwatch.noaa.gov

Training 2024, Virtual

11

Re-Projection

- •2-D
- Inverse Mathematical transform

•X,Y => Long,Lat =>
$$X^1,Y^1$$

More Distortion

Construction of Projections

"Imagine a light source projecting the graticule pattern onto a surface"

Geographic (WGS84)

Projection Plane

Tissot's indicatrix of circles illustrating distortion across a map

Mercator (WGS84) GOES-16 (GRS80)

Azimuthal Equidistant

Tissot's indicatrix of circles illustrating distortion across a map

NOAA CoastWatch

Training 2024, Virtual

Satellite Data Product Projections - Conformality

- Shape is preserved
- Representative of actual feature
- Useful for preserving shape
 - Mercator
 - Straight lines have constant bearing
 - Lambert Conformal Conic
 - Stereographic

35HN

25°N

Training 2024, Virtual

75 W

Albers Equal-area preserves area

25°N

30°

Satellite Data Product Projections - Area

Area is preserved

- •Area measurements consistent across map
- Useful for comparison
 - Albers Equal Area
 - Lambert Azimuthal Equal Area

Choosing a Projection: Considerations

"What are you trying to do?"

•Purpose

Presentation • Navigation • Comparison • Thematic

•Properties

Perspective • Equal-Area • Compromise • True Direction Conformal • Straight Rhumbs • Equidistant

•Extent

Global • Hemisphere • Ocean • Sea • Medium Scale • Large Scale

•Location

Equatorial • Polar • North/South • East/West • Oblique

Choosing a Projection: Data

- Metadata
- Format
- Resolution
- Existing Projection
 - Coordinate system
 - Datum
- Preparation

NOAA Blended SST in North Polar Stereographic Projection

Choosing a Projection: Data 'Inertia'

- Organizations may have selected a projection and have thousands of datasets using it.
- What projections are comparative data in?
- How much effort to reproject data?
- Is the difference between dataset projections minor or major?

Choosing a Projection: Metadata

•Information about the data – usually standardized

Methods used in collection / processing

•Custodian / Point-of-contact

•License

Choosing a Projection: Data Format

- Level of embedded metadata 'self-describing'
- Data storage
 - Scaling / Offset
 - Compression
- Geolocation Information
 - Tags
 - Attributes
- Complexity and Compatibility

JPEG2000 COG HUF NetCDF PNG TIFF GeoTIFF CSV ZARR JPEG

Choosing a Projection: Satellite Data Product Resolution

Spatial resolutions
meters to hundreds of kilometers

•Temporal resolutions •Minutes to days, weeks, or months

•How are data combined?

• Binning

• Gridding (always in a spatial context)

Resolutions from various chlorophyll-a products

Binning (Spatial / Temporal)

One day of granules used for CoastWatch Sector of chlorophyll-a from VIIRS

One day coverage for CoastWatch 'Sector'

Binning: Overlapping Data

One day coverage for CoastWatch Sector of chlorophyll-a from VIIRS

One day coverage for CoastWatch Sector of chlorophyll-a from VIIRS

Binning / Gridding

- Binning may be the minimum, maximum, average, most recent, valid value, or 'optimal' of overlapping pixels
- Shaded area shows pixels affected for a single daily composite

Example of overlapping VIIRS granules in shaded area

Satellite Data Product Projections

- Satellite sensor view (Swath / Level-2)
 - Irregularly/non-linearly spaced
 - May include unique structure based on sensor
 - Geolocations with respect to Ellipsoid and Datum
 - Earth rotation, platform stability, field-of-view
- Mapped (Gridded / Level-3, -4)
 - Projected Coordinate system
 - X-Y locations with respect to Ellipsoid and Datum

Summary

Projections and Coordinate Systems:

Earth is not flat or spherical, requiring complex projections for accurate satellite data representation. Geographic (Lat/Long) and projected (2D gridded) coordinate systems play key roles in GIS applications.

Choosing a Projection:

Selection depends on project needs: conformality, area, or direction may guide your choice. Metadata, resolution, and format considerations are critical when working with satellite data.

Handling Data:

Satellite data undergoes various binning, gridding, and reprojection processes. Be mindful of distortion introduced through projections and re-projections.

Key Takeaway:

Understanding projection choices and their effects is essential for accurate satellite data analysis in GIS.

Introduction to Map Projections

https://coastwatch.noaa.gov coastwatch.info@noaa.gov

Versioning:
 2024, Soracco

